

What is the essence of circularity for KPN?

INFLOW

Product design:

- 1. Recyclability
- 2. Recycled content

Current KPN performance:

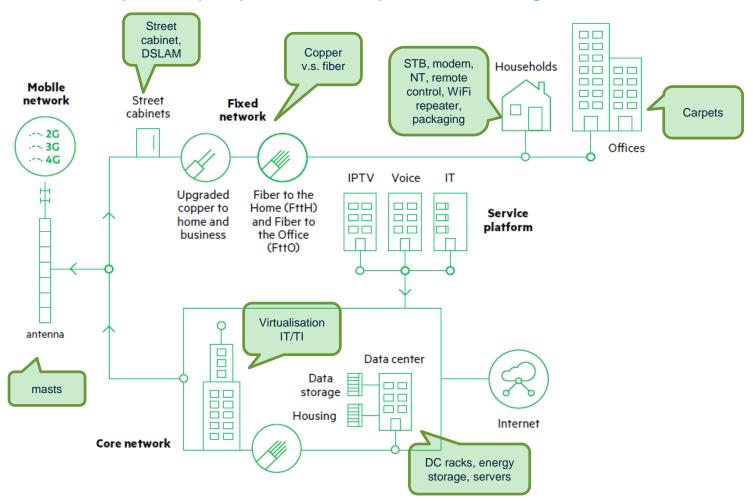
Products designed with recycled content %

Focus on 15 iconic products for KPN to be redesigned by 2022

OUTFLOW

End of Use Reuse & Recycling rate

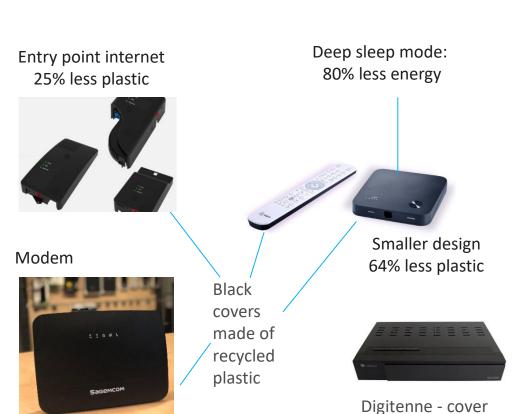
KPN performance 2019:


Reuse% + Re-cycle% 76% Waste via Incineration 24% Waste via Landfill 0%

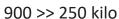
Our ambition: Zero Waste

Product design: measuring circularity of typical KPN products

We focus on 15 product passports for iconic products covering KPN's network and CPE



KPN introduces products with improved circular design



We focus on design, re-use & recycling as part of our 2025 circular ambition Target 2022: 15 products improved for circular design – 8 realized until now (we focus on key products only)

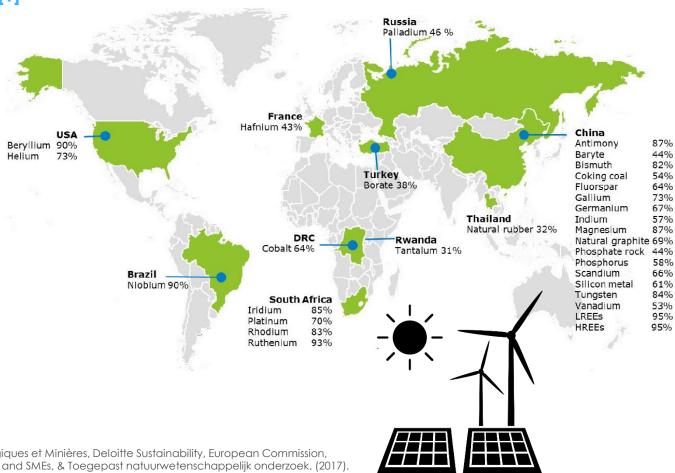
recycled metal

Recycled plastic cover

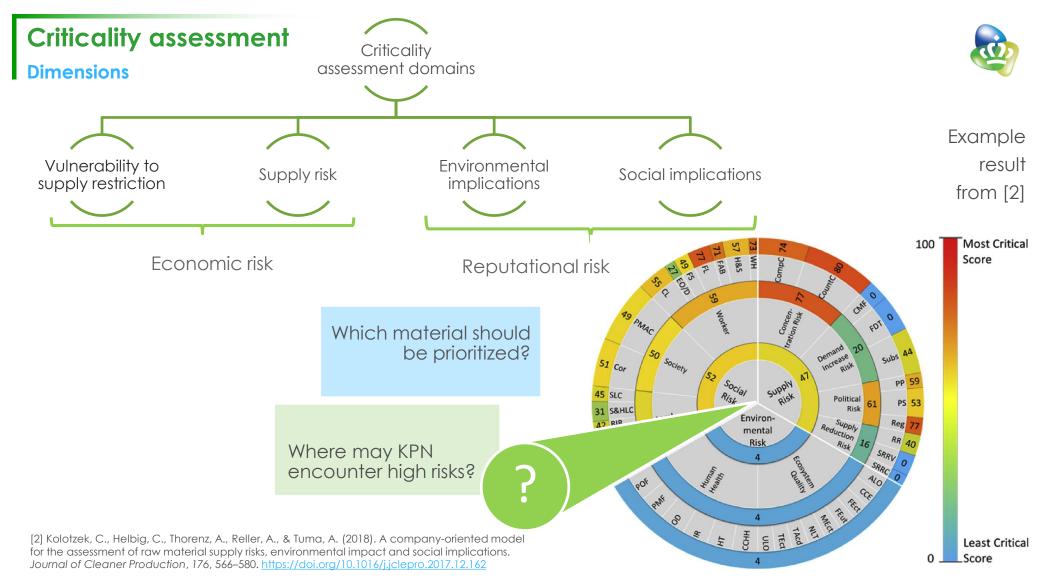
Pilot eco-slim fibre cable & duct

What are critical raw materials (CRMs)?

As defined by the European Union [1]



Critical raw materials3)


- Form base of important economic activities
- Supply security is at high risk

Reasons for criticality

- Geopolitical risk
- Demand risk
- Scarcity risk
- Environmental risk
- Social risk
- [...]

[1] British Geological Survey, Bureau de Recherches Géologiques et Minières, Deloitte Sustainability, European Commission, Directorate-General for Internal Market, I., Entrepreneurship and SMEs, & Toegepast natuurwetenschappelijk onderzoek. (2017). Study on the review of the list of critical raw materials: Final report. https://dx.publications.europa.eu/10.2873/876644

Criticality Assessment for telecommunication materials

Methodology

Step 1

Identifying key service area & equipment to investigate

- Remote control [Inhome]
- Modem [In-home]
- Core router [Network]
- Blade server [Network

Step 2

Identifying material composition of equipment with the support of suppliers

 Provision of material bills with a granularity where constituents are visible on an element level

Step 3

Conduct criticality assessment

Collect data

- company's vulnerability to supply restriction (impact on revenue and strategy)
- **substitutability** for the specific applications
- recent data on materials and political, social and environmental practices in production countries

Step 4

Determine company's CRMs and decide on strategies to mitigate

- Define list of CRMs
- Determine roots of criticality
- Chose mitigation options
 according to your ability
 to influence and the
 magnitude of impact

Critical Raw Materials

Occurence

1 H Hydrogen 1.008		Number of products the material is contained in:																Helium 4.003
3 Li Lithium 6.94	Be Beryllium 9.012	1 2 3 4											5 B Boron 10.81	6 C Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15.999	9 F Fluorine 18.998	10 Ne Ne on 20.180
Na Sodium 22.990	Mg Mg Magnesium 24.305												13 Al Aluminum 26.982	Si Silicon 28.085	Phosphorus 30.974	16 S Sulfur 32.06	17 Cl Chlorine 35.45	18 Ar Argon 39.948
19 K Potassium 39.098	20 Ca Calcium 40.078		SC Scandium 44.956	22 Ti Titanium 47.867	23 V Vanadium 50.942	Cr Chromium 51.996	Mn Mn Manganese 54.938	26 Fe Imn 55.845	27 Co Cobalt 58.933	2.8 Ni _{Nicke1} 58.693	29 Cu Copper 63.546	30 Zn ^{Zinc} 65.38	31 Ga Gallium 69.723	32 Ge Gemaniun 72.630	33 As Arsenic 74.922	34 Se Se len ium 78.97	35 Br Bromine 79.904	36 Kr Krypton 83.798
37 Rb Rubidium 85.468	38 Sr Strontium 87.62		39 Y Yttrium 88.906	Zr Zr Zirconium 91.224	Nb Niobium 92.906	42 Mo Molybdenu 95.95	43 Tc Technetium [97]	Ru Ru Ruthenium 101.07	Rh Rhodium 102.906	Pd Palladium 106.42	47 Ag Silver 107.868	48 Cd Cadmium 112.414	49 In Indium 114.818	50 Sn Tin 118.710	51 Sb Antimony 121.760	Te Te Tellurium 127.60	53 	54 Xe Xenon 131.293
55 CS Cesium 132.905	56 Ba Barium 137.327	* 57 - 70	71 Lu lutetium 174.967	72 Hf Hafnium 178.49	73 Ta Ta nta lum 180.948	74 W Tungsten 183.84	75 Re Rhenium 186.207	76 OS 0smium 190.23	78 r ridium 192.217	79 Pt Platinum 195.084	80 Au Gold 196.997	81 Hg Mercury 200.592	81 TI Thallium 204.38	82 Pb Lead 207.2	Bi Bi Bismuth 208.980	Po Polonium [209]	At At Astatine [210]	86 Rn Radon [222]
Fr Francium [223]	88 Ra Radium [226]	** 89 - 10	103 Lr PLawrencium [262]	104 Rf Rutherfordium [267]	105 Db Dubnium [270]	Sg Seaborgium [269]	107 Bh Bohrium [270]	108 Hs Hassium [270]	109 Mt Meitnerium (278)	DS Darmstadtiu [281]	Rg Rg	Cn Cn Copemicium [285]	113 Nh Nhonium [286]	114 Fl Flerovium [289]	MC Mc Moscovium [289]	116 LV Livermodus [293]	117 TS Tennessine [293]	Og Oganesson [294]

*Lanthanide serie

**Actinide series

57	58	59	60	61	62	63	64	65	66	67	68	69	70
₅sLa	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
Lanthanun 138.905	Ce rium 140.116	Praseodymiun 140.908	Neo dy miur 144.242	Promethius [145]	Samarium 150.36	Europium 151.964	Gadoliniur 157.25	Terbium 158.925	Dysprosium 162.500	Holmium 164.930	Erbium 167.259	Thulium 168.934	Ytterbium 173.045
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
Actinium [227]	Thorium 232.038	Protactinius 231.036	Uranium 238.029	Neptunium [237]	Plutonium [244]	Americium [243]	Curium [247]	Berkelium [247]	Californiur [251]	Einsteiniun [252]	Fermium [257]	Mendeleviu [258]	m Nobelium [259]

...to complex PCBs

Mitigation strategies

Example: Rhodium

Rhodium (Rh)

Function:

- Plating of electric contacts
- Constituent of capacitors and resistors

Hotspots

Companion metal, hardly substitutable Political stability/regulations 80% South Africa

Associated risk

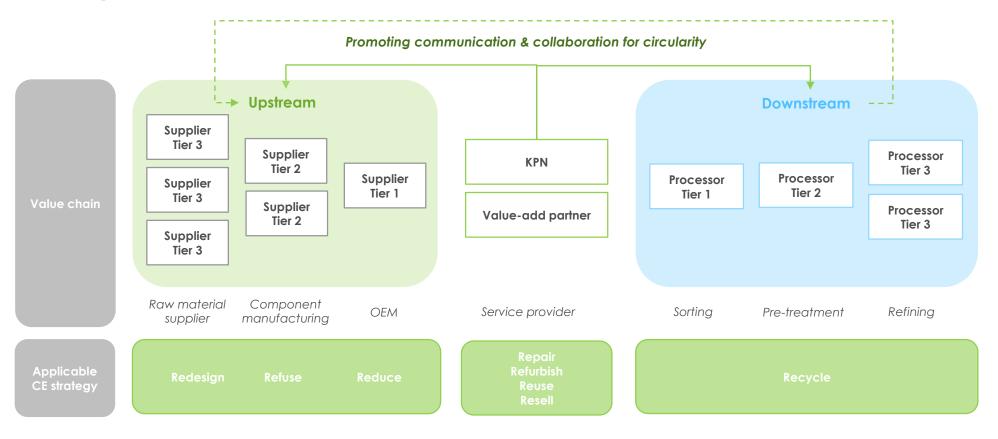
Economic risk

Mitigation strategy

Internal & External

- Design for reuse/refurbishment/recyclability
- Use secondary material source
- Substitution to non-critical materials

Systemic

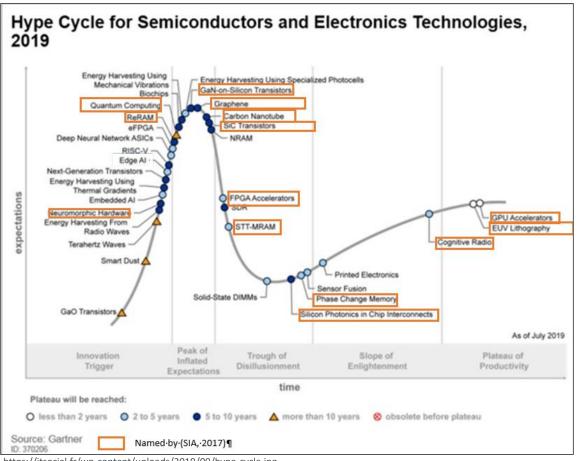

- Demand-based recycling targets
- Research subsidies and standardization
- Trade agreements

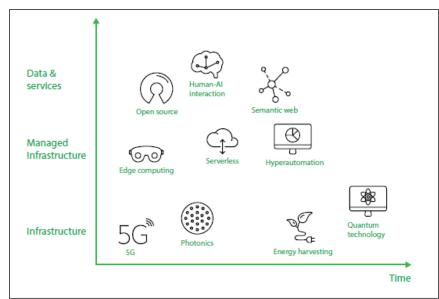
- Environmental risk
- Social risk

- Transparency
- Due diligence on suppliers
- Sourcing CERA (CErtification of RAw Materials) certified components/materials
- Translating externalities into pricing
- Trade agreements incl. social and environmental conditions for goods

Follow up research: Circular use of CRMs

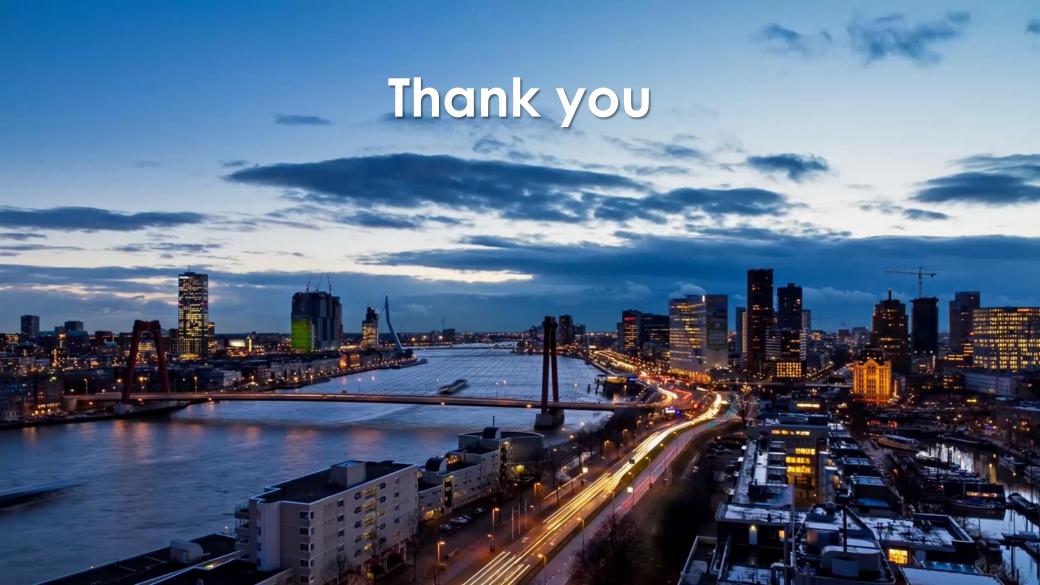
Achieving circularity of CRMs in KPN's value chain





How can circularity of CRMs be achieved via circular strategies suitable for product value chain and collaboration among our partners?

Follow up research: Impact of CRM on future technology


Strategic importance for KPN

KPN Technology Book

- What impact do new technologies have on our network architecture and equipment?
- Which CRMs will be required?
- How can we build supply chain resilience?

